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Abstract 

We describe the development of a compact, self-contained sensor which uses machine learning to provide 

an early warning of failure in implanter subsystems. Using commercially available low power and low-cost 

MEMS sensors, the system correctly identifies known good and known failing systems with an accuracy 

of better than 99.9%. 

 

1. Introduction 

Micro-electromechanical systems (MEMS) are a broad class of devices encompassing a wide range of 

functions. Of particular interest are the subcategory of MEMS sensors which include accelerometers, 

temperature sensors, and magnetometers, among others. The small size of individual MEMS sensor 

devices allows them to be enclosed in standard electronic component packages. Combining the 

convenient form factor with their low power requirements makes these sensors easy to embed on compact 

and inexpensive PCB interfaces. Combining these platforms with embedded micro-controller processing 

allows for the development of fully integrated sensor platforms at costs and sizes far lower than 

traditional sensor technologies. This has led to wide adoption of such platforms across a variety of 

industries. 

In parallel to the proliferation of sensor technologies has been the rise and integration of Artificial 

Intelligence and Machine Learning (AI/ML) processing into sensor platforms. Machine learning is a 

subfield of artificial intelligence which deals with the development of statistical algorithms for processing 

data. Sample data is read into an analysis algorithm which in turn generates a secondary algorithm, see 



figure 1. The secondary algorithm can be used to predict future system behavior based on patterns 

observed in the training dataset. The adaptive nature of the AI/ML processing techniques make them an 

invaluable tool for data analysis and reduction. 

By coupling these two technologies, we have been able to collect and process high volumes of diagnostic 

data from our implanter. We have leveraged this data and processing algorithm to serve as an early 

warning system of failures on end-of-life system and subsystem components. 

 

2. Materials and Methods 

As interest in MEMS sensors has grown, so too has the availability of sensors. Several electronic 

manufacturers and third-party companies now offer integrated development platforms featuring MEMS 

sensors. We chose to use the SensorTile from ST for our sensor system development. Our choice was 

driven by three key metrics: flexibility, ease of use, and cost/availability. 

The ST SensorTile is a general-purpose evaluation board that comes with eight sensors. Included on the 

board are a temperature sensor, two 3-axis accelerometers, a 3-axis magnetometer, a barometric pressure 

sensor, a microphone, a humidity sensor, and a 6 degree of freedom inertial measurement unit 

(combination accelerometer and gyroscope). All of these components are populated on a single PCB and 

housed in a plastic enclosure measuring approximately 60 x 35 x 20 mm, see figure 2. The compact size 

and diversity of included sensors makes the SensorTile well suited to exploratory measurements. 

Interfacing with the board can be done over Bluetooth via a smartphone app or via direct programming of 

the onboard STM32 microcontroller. For our work, the app interface provided sufficient control to collect 

the required data and allowed us to significantly reduce development time. We used the app to write a 

custom program for data collection and stored data on the provided internal memory card. The data were 

transferred to an external computer for processing and AI/ML algorithm development. 



SensorTile boards are stocked at several major electronic component distributors as well as through ST 

directly and at time of writing cost approximately $50 (USD) per unit. 

 

3. Results 

3.1 Data Collection 

For our proof-of-concept tests we chose to collect and analyze the vibration signatures of one of the 

implanter wafer handling subsystems. This subsystem was chosen based on relative ease of access to parts 

on the implanter, number of in-house units available for testing, and the ability to independently verify 

failure conditions in end-of-life units. 

To record our data, we configured a SensorTile to collect high speed acceleration data remotely and store 

it to the internal memory of the SensorTile board. Data collection was initiated via Bluetooth app and 

sensors were left in-situ to collect data passively without interrupting regular system operation. Collection 

duration was primarily limited by the lifetime of the SensorTile battery. As configured for our data 

collection, this lifetime was approximately 24 hours. 

Our initial round of concept data was collected directly on failed components in a benchtop test. We used 

a SensorTile to collect acceleration data from new and failed subsystem components undergoing 

replacement. These data, shown in figure 3, show a measurable difference in acceleration magnitude 

variance between the two unit types. This collection was repeated for different sets of failed components 

and was shown to be type-consistent across units.  

Based on the results of the benchtop tests, we proceeded to on-tool measurements. An in-house subsystem 

that was identified as being near end of life and beginning to fail was compared to a known-operational 

subsystem on the same tool. Both subsystems were run through a common set of typical wafer handling 

tasks and recorded serially using the same SensorTile recording configuration as the benchtop test. Unlike 



the benchtop test, the sensors were not connected directly to the failing component but rather to the 

exterior housing of the subsystem. The data are shown in figure 4. The vibration magnitude differences 

between these datasets, while still measurable, were not as pronounced as those observed in our benchtop 

test. This was likely due to the weaker vibrational coupling through the exterior case of the subsystem. 

Despite the reduced signal magnitude, the differences were still sufficient to allow for type classification. 

 

3.2 Algorithm Development 

The purpose of the model is to classify which end-of-life subsystems were failing vs still operating 

properly based on vibration signature without the need for external verification. The measurable 

differences in acceleration signal between the known-good and known-bad subsystems in both of our test 

cases provided a robust set of training data for a binary classification algorithm. Even so, the algorithm 

development was an iterative process. 

Our first and simplest model was a decision tree based on acceleration magnitude variance, see figure 5. 

This model was developed shortly after collecting the benchtop data and before the on-tool data had been 

collected. Despite yielding good results for the benchtop testing data (figure 5), we found that the model 

was not flexible enough to accurately predict the on-tool data.  

After several iterations of the algorithm, we were able to generate a robust algorithm that performed well 

across a wider sample of conditions, see figure 6. This algorithm delivered an accuracy of better than 

99.9% while minimizing the number of false negatives. The tradeoff for increased accuracy in this case is 

that the algorithm requires a larger sample size of data to properly classify the subsystem state than our 

simple decision tree. This requirement is mitigated by using a high sample rate for the accelerometer data 

collection. 

 



4. Discussion 

The final steps in algorithm development are validating the model’s accuracy and deploying it on a sensor 

platform. Testing across several different in-house subsystems has shown robust model performance, but 

more trials across a wider array of subsystem types are necessary before the model validation is complete. 

As we continue to collect validation data for the model, we are also iterating the design of the sensor 

platform. The SensorTile platform is a very powerful evaluation tool, but it is neither designed nor 

expected to be a permanent solution. Once the sensor design is settled, the algorithm can be deployed as 

an embedded program in the sensor firmware. Using a microcontroller based processing or native on-

sensor computation (so-called “edge” processing) will allow the sensor to record and report results 

without the need for external communication. This will allow us to enhance data security while still 

providing an accurate early warning indicator for system performance. 
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Figure Captions: 

1. Schematic of typical AI/ML supervised learning classifier algorithm development process. 
Training data are collected and fed into a classifier model. The generated model is then deployed 
on a processor which takes new sample data as inputs and outputs classes assigned to the data by 
the classifier model. The output classification accuracy can be evaluated and used to further refine 
the classifier model’s algorithm until the desired performance metrics are achieved. 



2. ST SensorTile.box MEMS evaluation platform used for data collection. The plastic housing 
measures approximately 60 x 35 x 20 mm. Ruler and US quarter included for scale. 

3. Benchtop accelerometer data collected on isolated subsystem components. (a) Acceleration vector 
components vs time for a known-good subassembly part. (b) Known-bad subassembly part 
acceleration vector components vs time. These data are shown on the same vertical axis scaling. 
(c) Combined and reduced vector magnitude data vs sample index for both known-good and 
known-bad subassembly parts.  

4. Accelerometer data collected from on-tool subassemblies. (a) Acceleration vector components vs 
time for a known-good subassembly. (b) Known-bad subassembly acceleration vector 
components vs time. These data are shown on the same vertical axis scaling. (c) Combined and 
reduced vector magnitude data vs sample index for both known-good and known-bad on-tool 
subassemblies.  

5. Decision tree structure and confusion matrix. (a) Schematic of the decision tree classifier model 
algorithm. (b) Confusion matrix and key performance metrics for the decision tree classifier 
model as applied to our test data subset. 

6. Confusion matrix and key performance metrics for out iterated classifier model as applied to our 
on-tool test data. 
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