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SIC next step for maturity and massive diffusion
Implant for Performances, Reliability and Costs
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Continue effort to control
Extend doping implantation capability for defectivity/reliability. Implant to local
future generation device (e.g. SJ)

Splitting by implant to continue scale
engineer SiC properties

substrate costs (and performances)
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. Agenda

s |NNOvation — Extend Doping capability

¢ e Path for ultra-low resistivity by implant and laser annealing co-optimization
e Enabling Device innovation with SJ Channeling implant

Reliability - SiC Material modification

e Proton implant for mitigation of stacking fault expansion
e Amorphization implant for selective oxidation

e Future implant for splitting
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Extend Doping capability - Ultra-low resistivity
Junction manufacturing process limit
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Extend Doping capability - Ultra-low resistivity
Implant and laser annealing co-optimization

L
Ind ial .0 t" o 5) Al-implant
-implan
ndustria IR vy 0 000 n- EPI
process n+ 4H-SiC
substrate
Epitaxy Implantation (s500°c) Carbon Cap Furnace Annealing Cap Removal
® @ —@ @ @ >
m Advanced ion implantation
I + e Control & Minimize defect level
@ i o t’c o]
-implant
‘ ‘ ‘ ‘ n- EPI
n+ 4H-SiC m Avoid capping layer process and to reduce
substrate manufacturing costs

New e

Process Epitaxy Optimized Implantation Laser Annealing
@ m Laser annealing to combine
high temperature activation efficiency with no
high thermal budget-induced extending defects
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Advance implantation engineering:
Defect modulation

m Rising wafer temperature (~500°C) during implantation is successfully implemented for doses 1E15cm2 and below

S . 0
m We explore doses >> 1E15cm™ with a rising wafer temperature to 800°C Signals normalized to E,(TO) peak (776 cm ),

indicator for the lattice quality.
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Hallén, A., & Linnarsson, M. (2016). o .
Surface and Coatings Technology, 306, 190-193. Raman shows that 800°C implantation can

preserve crystal quality at the same level of EPI

Rising wafer temperature during implantation

Increasing implantation temperature over 800°C drastically reduces
defect level up to 50% (effect is enhanced for high doses)
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" Extend Doping Capabillity - Ultra-Low Resistivity

. Defect Evolution vs. Thermal Budget

Implant 3E16 @800°C
Furnace Annealing 1700°C 30 minutes

Nanoscale precipitates

Implant 3E16 @800°C
Laser Annealing

 COORY021 [
LJ299-51

COORD756
L0299-51-3

1129951

Polygonal loops: Al precipitates
and vacancy agglomerates

Basal plane dislocations
Mazzamuto, Fulvio, et al. Solid State Phenomena 359 (2024): 21-28.

Highly defective junction Extended defect free junction

Short timescale totally suppresses extended defects
No visible dislocations nor polygon loops

4H-SiC Crystal is preserved, but enhanced
BPD and polygonal loops grow during
high thermal budget annealing
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" Extend Doping Capability - Ultra-Low Resistivity
. Defect Evolution vs. Thermal Budget
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doping

High activation efficiency

Junction resistance is substantially improved for all the conditions

(up to 6 times better with respect to literature)
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" Extend Doping Capability - Ultra-Low Resistivity
. Implant Laser Annealing Key Requirement

T

180 & L ole 3 Hallén, A., & Linnarsson, M. (2016).
: Y _3-ie« 1 Surface and Coatings Technology, 306, 190-193.
Implantation N =

* Minimize implant-induced damage level

by increasing implantation temperature
i ] o Melting threshold Al-implant
0 200 400 600 800 2500 — EPI 4H-SiC
(Laser) Annealing

Relative Damage (%)

from std 500°C to 800°C

Optimize UV irradiation

* Toreach highest temperature below “melting” temperature (minimizing risk of surface
degradation) extending time w0

* Extending irradiation dwell time to microsecond to maximize activation process
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The reduced thermal budget and reduced implantation
~ damages prevent from surface degradation. . , .I.
- . axcelis

oY AMA Specific co-optimization of implant and anneal shows that

YYYYYLY] process is effective even without a carbon cap layer.
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. Agenda

s |NNOvation — Extend Doping capability

«

e Path for ultra-low resistivity by implant and laser annealing co-optimization
e Device innovation with SJ with Channeling implant

Reliability - SiC Material modification

e Proton implant for mitigation of stacking fault expansion
e Amorphization implant for selective oxidation

e Future implant for splitting
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" Device Innovation
. Super Junction with High Energy - Channeling Implant

Multi-Step EPl/Mask/Implant

Pro
o= * Achievable with current technologies
AR Cons
* High costs
* Alignment and uniformity between layers
1.0E+01 F
o ' ! i
g Kobayashi, Y. et al. (2019).(ISPSD) (pp. 31-34). IEEE. .
g X Y (20194 ) (pp ) Trench filling by EPI
< Conventional ® "
1 4H-SiC =
-§LOE+00 : MOSFETs T ® [1120]* Pro
;-é' ] ..--_-.-_-_-.-_"_';.'_'— 28R M . * Higher process flexibility
% This work Cons
2 . 0.63 mQcm?/ 1170V 1.1.1.5 * Require complex EPI step.
ik ; ohm — (doping variability, sensitive to
LOE+02 LOE+03 LOE+04 T [L10CI orientation...)
Blocking voltage (V) (d) -0.5° (e) 0° (f) 0.5°
Masuda, T., et al. IEDM IEEE, 2018. Ryoji Kosugi et al 2017 Jpn. J. Appl. Phys. 56 04CRO5
High Energy Channeling Implant
' ' Pro
. . * A more cost-effective approach
Super Junction MOSFET is the best-known Cons

path for extending SiC unipolar limit
L High energy Implant the promising solution

Coeecese !
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* Require industrial implanter capable of >5um projected ranges
* Masking capability with high stopping power
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Super Junction with High Energy Channeling Implant
Projected Range — Current Capabillity
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lon Range [nm]
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lon Energy [MeV]

Projected range for conventional MC implanter limited to 1um to 3um with channeling

High energy industrial implanter can reach 4um to 7um with channeling to dope the
entire EPI-layer of a conventional class 1.2kV MOSFET
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" Path for Extending Implant Depth
. High Energy Channeling Implant Key Requirements

Beam-Channel alignment

0.4

on-axis wafer
[0001] O° Tilt

Energy Range

[1700]

Critical angle 8., (deg)

=S

— Al

— He |

1

10
Acceleration Energy (MeV)

Theoretical critical angle for Aluminum channeling
1MeV - 0.37°
3MeV > 0.21°
12MeV > 0.11°
15MeV > 0.09°

M. Belanche al. Mater. Sci. Semicond. Process. 179 (2024): 108461.

Ziegler, James F., ed. lon implantation science and technology. Elsevier, 2012.

m Up to 10MeV with channeling to reach 6-7um depth profiles identified as best trade off:
* Most effective solution for majority of SiC devices class below 2kV
* Achievable process window (Critical angle > 0.1°)
* Achievable ion acceleration (for production purpose)
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. Agenda

s |NNOvation — Extend Doping capability

e Path for ultra-low resistivity by implant and laser annealing co-optimization
e Enabling Device innovation with SJ Channeling implant

«

Reliability - SiC Material modification

e Proton implant for mitigation of stacking fault expansion
e Amorphization implant for selective oxidation

e Future implant for splitting

axcelis



" Material Modification - Proton Implant for SF Expansion Mitigation

. Challenges and Opportunities

Stacking fault formation energy m Energy formation of crystallographic defects in

Si 55 ml/m? 4H-SiC is more then 10x lower than Silicon.
Ge 60 mJ/m?2
4H-SiC 4.7 mJ/m? m SiC industry has to learn how to improve device
6H-SIC 2.9 mi/m? reliability mitigating but coexisting with SF
defects.
(b) :

SF per Die

n- drift epi
H. Das et al. Defect and Diffusion 2023,
Vol. 434, pp 51-59, N. A., (2012). JAP 120(11).

Mahadik, Nadeemullah A., et al.
App. Phys. Lett. 100.4 (2012).

Minority carrier lifetime reduction mitigates SF

expansion. Doping concentration and defect
engineering are the best-known methods to control it
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Path for improvement

m SF expansion has been associated with minority carriers

m Reducing minority carrier lifetime is proven to be
effective in prevent SF propagation in the drift layer

m Effective mitigation has been T . |scsmoeeon
demonstrated by an : | A‘ 208102
EPI-buffer with high Nitrogen & [°* . .
concentration 5;10 * ol

=

10" 10"
Nitrogen Concentration (cm3)

0.3um thick  0.1um thick 0.3um thick
* anode ( n buffer * anode
10um thick . : 10pum thick

n- drift epi n- drift epi

\

100-

sample

AV, (mV)

0
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Tawara et al. J. Appl. Phys. 120, 115101 (2016)
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- Material Modification- Proton Implant for SF Expansion Mitigation
. Mechanism and Implantation Process

m Implant offers an effective solution for carrier lifetime control via doping and/or defect engineering.
Differently from EPI-buffer, lifetime control can be masked and modulate in depth by the implant projected range.
m Proton implant solution has been demonstrated repeatedly
* Implant effective once located in the EPI-layer up to the EPI-bulk interface. Effect vanishes if in the bulk

» Effect increases when increasing the proton dose and tends to saturate above 1E14cm™

Post-EPI proton I/I
P / Hydrogen density (cm®)
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/ \\‘ ar .5 Q=1
n+ / \f z 3 0 . - -
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. Bl el Kato, M., et al. (2022).

Proton dose (cm2)

O—
0c

Scientific Reports, 12(1), 18790.

Multiple demonstrations that proton-implanted layer at the Epi-Substrate interface

Sl shields the active device from bulk crystal defects expansion during operation
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- Material Modification- Proton Implant for SF Expansion Mitigation
. Key Requirements

N
o un

Implant energy range T
=2
m Implant energy to be adjusted to locate the proton buffer layer at the §15
EPI-bulk interface. Projected range to vary from 5um to 20um (for g 10
lower to high voltage class devices), corresponding to 600keV to g 5
1.5MeV “ 0
400 9200 1400 1900
Energy [keV]
- ReqUires radiation ContrOI. SiC H+ 600 keV- BOOuA -1E15 lons/cm”2
High energy light ions implanted into SiC 300 |
generate radiation due to nuclear reactions with ¢ [
silicon and carbon atoms £
Kl
30 T
0 500 . 1000 1500 P. DeRosa, et a|’

m Requires relatively high dose (1E14 cm2) for this energy range to maximize the effect.
Needs higher beam currents to be compatible with industry target costs
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. Agenda

s |NNOvation — Extend Doping capability

e Path for ultra-low resistivity by implant and laser annealing co-optimization
e Enabling Device innovation with SJ Channeling implant

«

Reliability - SiC Material modification

e Proton implant for mitigation of stacking fault expansion
e Amorphization implant for selective oxidation

e Future implant for splitting

axcelis



Material Modification - Amorphization Implant for Selective Oxidation

.’ Challenges and Opportunities

Thermal oxidation remains the reference insulation process with a limiting trade off:

m High temperature (>21300C) improves the oxide quality by decreasing SiCxOy and so o ELECTRIC AELD
D i t * Ep,sic (A)

ELECTRIC FIELD

m High temperature impacts SiC surface inducing a negative SiC lattice distortion**.

“JEqclB)  Erg(B)

m Process complexity increases when multiple SiC faces having different response are
exposed

1

DRAIN
Surface oxidatio - 2 T T T
Trench sidewall 100 O meas. SIiC C-face 1090°C
0001 Errma s — - . . G =
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= 7 E aF / S ] £ a0
La: . . i _ =
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" (0001) 7 / "Si face” k| o / “““ ‘/-~-\_ £ w A\
n-drift r g 10 FRee b Sex 3 ‘\
g of WY 2 Ly |
Image from Yole _ g ar =3 - E 10 \\:-, —¥
(1100) bl i TT—_
“M face" (1120) 2+ E 30 ! 8 |
M face "A face" | [ 2 — —
1 11 11111 1 11 11111 1 1 11111 mz.ll
A 1 2 4 68 2 4 68 2 4 68 r
Cface 1 10 100 1000 2 10
g
. . . - . Oxide thickness [nm
Thermal Oxidation Mechanism of Silicon Carbide Lom] e Bettom Ouide Thickness micronsy —*

Trench Bottom Oxide Thickness (microns)

http://dx.doi.org/10.5772/50748

A A | et al. (WiPDA 2018 . 125-129
*H. Kurimoto et al. / Applied Surface Science 253 (2006) 2416-2420 garwal et al. (Wi ) (P 4

**A. D. Hatmanto and K. Kita, Appl. Phys. Express 11, 011201 (2018).

Thermal SiO, in SiC never reached comparable maturity as in Si. The carbon atoms compromise the oxide

quality and multiple SiC planes having different responses limit the control of the growth and increase the
variability. Modifying 4H-SiC prior to oxidation can be an option to solve these limitations

ANT2 axcelis
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" Material Modification - Amorphization Implant for Selective Oxidation

. Mechanism and Implantation Process

lon implantation to solve the trade off:

m SiC amorphization implant to reduce oxidation temperature
(to avoid SiC surface degradation)

m Enriching chemical concentration of Si and/or oxygen
further accelerates the process minimizing carbon impact

m For controlling the 3D amorphization profile, a lower
temperature oxidation process can be selective and insensitive

to crystal orientation

3000

® Amorphous SiC
B Crystalline SiC

2000

Oxide thickness (A)
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e l—e
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Oxide thickness (nm)
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Makhtari, A. et al. (2001). Materials Science in Semiconductor

Processing, 4(4), 345-349.
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Liu, M. et al (2019). Journal of Materials Science, 54, 1147-1152.

Demonstration LOCOSIC

LOX-SBDs CVD-SBDs
A A T
i ||| —
definition _ WETTTTES
n 1x10" em?) q
Ar PAI
Wet ox. N, anneal
N, anneal BOE etching
Backside )
ohmic cont. @ Backside
Fe. 5 TEM ohmic cont.
BOE
etch-back
(Ar plasma) & @ (Ar plasma)
+metaldep. + metal dep.

\ -
Region (

200 nm

J.-C. Cheng, et al. Solid State Electronics 171 (2020) 107834

)

dependence/variability from crystal orientation.
Increasing oxygen and/or silicon concentration can further enhance the method

Amorphization implant can induce a selectivity for thermal oxidation process reducing the
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" Material Modification - Amorphization Implant for Selective Oxidation
. Key Implant Requirements

Advance Profile Engineering

m Require the maximum capability to control 3D implanted profile
and induced defects. This can be done by implanting the total dose Ta%
with a sequence of subsequent implants where every step is B W
optimized for Dose, Energy and Angle.

=3
b

g B
8 R
S o«
| \
- J \
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Y |
£%y
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g

oron Concentration, at/em3

B
8

Example of profile engineering tuning dose,
energy, angle per sub-recipe

1E+22
O
A w 1E+21 mplan
g
m Very high dose (1E16 cm and beyond) to guarantee the 7‘2
amorphization and chemically enrich the layer. s
Need high productivity to be compatible with industry target costs E 16420 .\
:{\5
A
1E+19 3:;;5!
0006660 0 10 20 30 40 50

ecececee Depth [nm]
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. Agenda

s |NNOvation — Extend Doping capability

e Path for ultra-low resistivity by implant and laser annealing co-optimization
e Enabling Device innovation with SJ Channeling implant

Reliability - SiC Material modification

e Proton implant for mitigation of stacking fault expansion
e Amorphization implant for selective oxidation

«

e Future implant for splitting
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" Future Implant for Splitting
. Challenges and Opportunities

NV o
5 SWEDNE
— B 4 i S =y | — = B
== &y sk &

n+
m m - Mechanical polishing i i
. ~200pm 50~60um 10~20um ~5Um From Yole
per wafer H H H ! Only a small fraction of

the 4H-SiC is really used
m >30% of the cost of a 1200V SiC MOSFET is the wafer cost " | “ He LF at RT

e e
L

m Tremendous waste in wafering and device. Substrate has no
interest in the device functionally. It is only the mechanical
support (can be thinned down and/or replaced)

?

X

damage

oo ° -~
—— SO e

precipitation

m Feasibility of splitting by implantation has been repeatedly
demonstrated (e.g. SmartSiC). Big opportunities remain for
yield/costs improvement and new integrations

B, N. Daghbouj et al.
®S@®8®:  Acta Materialia 188 (2020) 609622

Pressurize d blister 5
cavities

|

@ points defects: I, V, I, V,, VH,, V,H; ® H bubble
@ Blister cavity a-SiC: amorphous layer

SiC substrate remains the main contribution to die cost

4H-SiC splitting by ion implantation can open multiple paths

SOee0cee to reduce substrate contribution to die costs
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A
L Summary

m Implant can play an important role to support continuous growth of SiC.
Addressing key challenges in innovation, reliability and costs:

* Innovation extending current limitation in junction resistivity and depth for future super junction devices

 Reliability giving the ability to modulate SiC properties locally,
to control minority carrier lifetime preventing SF expansion
and to induce a selectivity in SiC to form high quality thermal oxide in complex pattern.

* Cost providing a path to reduce substrate cost, main contributor in limited SiC option.
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Thank You for Your Attention!
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